
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AN ANALYSIS OF THE PERFORMANCE AND SECURITY OF J2SDK 1.4 JSSE 
IMPLEMENTATION OF SSL/TLS  

 
 

THESIS 
 
 

Danny R. Bias, Captain, USAF 
 

AFIT/GCS/ENG/04-02 
 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 



 

 

 

 

 

 

 

 

 

 

 

The views expressed in this thesis are those of the author and do not reflect the official 

policy or position of the United States Air Force, Department of Defense, or the U.S. 

Government. 



 

AFIT/GCS/ENG-04-02 

 

AN ANALYSIS OF THE PERFORMANCE AND SECURITY OF J2SDK 1.4 JSSE 
IMPLEMENTATION OF SSL/TLS 

 
 

THESIS 

 
Presented to the Faculty 

Department of Electrical and Computer Engineering 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science 

 

 

Danny R. Bias, BS 

Captain, USAF 

 

March 2004 

 

 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

 

AFIT/GCS/ENG-04-02 

 

AN ANALYSIS OF THE PERFORMANCE AND SECURITY OF J2SDK 1.4 JSSE 
IMPLEMENTATION OF SSL/TLS 

 
 

 
 

Danny R. Bias, BS 

Captain, USAF 

 
 

 
 
 
 
 
 
 
 
Approved: 
 
 
 
 
// SIGNED //                                                   11 Mar 2004 
Dr. Richard A. Raines, DAF (Chairman) Date 
 
// SIGNED //                                                   10 Mar 2004 
Maj. Rusty O. Baldwin, PhD (Member)  Date 

 
// SIGNED //                                                   10 Mar 2004 
Dr. Gilbert L. Peterson, DAF (Member)  Date 
 

 
 
 



 

v 

Acknowledgments 

 

I would like to express my sincere appreciation to my faculty advisor, Dr. Richard 

Raines, for his guidance and support throughout the course of this thesis effort.  The 

insight and experience was certainly appreciated.  I would, also, like to thank my sponsor, 

Mr. Neal Ziring, from the National Security Agency for both the support and latitude 

provided to me in this endeavor. 

  

 
       Danny R. Bias 

 

 

 



 

vi 

 

Table of Contents 

Page 

Acknowledgments................................................................................................................v 

Table of Contents............................................................................................................... vi 

List of Figures ......................................................................................................................x 

List of Tables ................................................................................................................... xiii 

Abstract ............................................................................................................................ xiv 

1.  Introduction...................................................................................................................15 

2.  Background...................................................................................................................17 

2.1 Introduction ..........................................................................................................17 

2.2 History of Security in Java ...................................................................................17 

2.2.1 Mobile Code ......................................................................................................17 

2.2.2 Java 1.0 Sandbox Security Model .....................................................................19 

2.2.3 Java 1.1 Trusted Code Security Model..............................................................19 

2.2.4 Java 1.2 Configurable and Fine-Grained Access Security Model.....................20 

2.3 Secure Sockets Layer (SSL) Basics .....................................................................21 

2.3.1 SSL Protocol......................................................................................................21 

2.3.2 Cipher Suites .....................................................................................................24 

2.4 Java Security Architecture....................................................................................25 

2.4.1 Core Java 2.0 Security Architecture..................................................................26 

2.4.2 Java Cryptography Architecture........................................................................27 

2.4.3 Extensions..........................................................................................................27 

2.5 JSSE Implementation of SSL ...............................................................................29 



 

vii 

2.6 Malformed SSL Communications........................................................................32 

2.6.1 Malformed SSL Messages.................................................................................32 

2.6.2 Correctness of Cipher Suite Handling...............................................................32 

2.7 Timing and Cryptographic Attacks on SSL .........................................................33 

2.7.1 Padding Attacks.................................................................................................33 

2.7.2 SSL timing.........................................................................................................34 

2.7.3 Random Number Generation.............................................................................35 

2.8 Denial of Service and Resource Exhaustion Possibilities ....................................36 

2.9 Tools .....................................................................................................................36 

2.10 Summary.............................................................................................................37 

3.  Methodology.................................................................................................................38 

3.2 Problem Definition ...............................................................................................38 

3.2.1 Goals and Hypothesis ........................................................................................38 

3.2.2 Goal 1 Approach (Timing Attack Protection) ...................................................39 

3.2.3 Goal 2 Approach (Performance Comparison)...................................................40 

3.3 System Boundaries ...............................................................................................40 

3.4 System Services....................................................................................................41 

3.5 Performance Metrics ............................................................................................41 

3.6 Parameters ............................................................................................................41 

3.6.1 System ...............................................................................................................41 

3.6.2 Workload ...........................................................................................................42 

3.7 Factors ..................................................................................................................44 



 

viii 

3.8 Evaluation Technique...........................................................................................45 

3.8.1 Cryptographic Hash Function............................................................................45 

3.8.2 Asymmetric Encryption.....................................................................................46 

3.8.3 Symmetric Key Encryption ...............................................................................47 

3.9 Experimental Design ............................................................................................49 

3.10 Summary.............................................................................................................51 

4. Analysis and Results ......................................................................................................53 

4.1 Chapter Overview.................................................................................................53 

4.2 Results of Simulation Scenarios...........................................................................53 

4.3 Investigative Questions Answered .......................................................................65 

4.3.1 RSA Blinding ....................................................................................................65 

4.3.2 Resource Exhaustion .........................................................................................65 

4.4 Summary...............................................................................................................66 

5.  Conclusions and Recommendations .............................................................................67 

5.1 Research Overview...............................................................................................67 

5.2 Conclusions of Research ......................................................................................67 

5.3 Significance of Research ......................................................................................68 

5.4 Recommendations for Action...............................................................................68 

5.5 Recommendations for Future Research................................................................69 

5.5.1 SSL standards compliance.................................................................................69 

5.5.2 SSL security configuration and lockdown ........................................................70 

5.5.3 PKI Security ......................................................................................................70 

5.5.4 JSSE/JCE randomization and key generation ...................................................71 



 

ix 

5.5.5 Robustness of JSSE Implementation.................................................................72 

5.6 Summary...............................................................................................................73 

Appendix A........................................................................................................................74 

Appendix B ........................................................................................................................86 

Appendix C ........................................................................................................................92 

Bibliography ......................................................................................................................95 



 

x 

List of Figures 

Page 

Figure 1: SSL Handshake Protocol................................................................................... 22 

Figure 2: SSL Record Protocol ......................................................................................... 23 

Figure 3: JSSE classes used to create SSLSockets [Sun03]. ............................................ 30 

Figure 4: System Under Test ............................................................................................ 40 

Figure 5:  Multiple thread code......................................................................................... 43 

Figure 6: Source code for asymmetric key encryption. .................................................... 47 

Figure 7: Symmetric key cipher suite implementation ..................................................... 49 

Figure 8:  Pilot Study (Lilliefors graph) ........................................................................... 51 

Figure 9: Round Trip Time (RTT) for 16 Byte Data Packets, 96 MB Heap, and DES3 

Encryption. ................................................................................................................. 57 

Figure 10: Round Trip Time (RTT) for 768 Byte Data Packets, 96 MB Heap, and DES3 

Encryption .................................................................................................................. 57 

Figure 11: Round Trip Time (RTT) for 1418 Byte Data Packets, 96 MB Heap, and DES3 

Encryption .................................................................................................................. 58 

Figure 12: CPU Utilization for DES3 Simulation With Heap Size 96MB and Encrypted 

Data Size of 16 Bytes ................................................................................................. 59 

Figure 13: CPU Utilization for DES3 Simulation With Heap Size 96MB and Encrypted 

Data Size of 768 Bytes ............................................................................................... 60 

Figure 14: CPU Utilization for DES3 Simulation With Heap Size 96MB and Encrypted 

Data Size of 1418 Bytes ............................................................................................. 60 



 

xi 

Figure A.1:  JMP Distribution Data for Heap Size of 64 MB (Part 1) ............................. 74 

Figure A.2:  JMP Distribution Data for Heap Size of 64 MB (Part 2) ............................. 75 

Figure A.3:  JMP Distribution Data for Heap Size of 64 MB (Part 3) ............................. 76 

Figure A.4:  JMP Distribution Data for Heap Size of 96 MB (Part 1) ............................. 77 

Figure A.5:  JMP Distribution Data for Heap Size of 96 MB (Part 2) ............................. 78 

Figure A.6:  JMP Distribution Data for Heap Size of 96 MB (Part 3) ............................. 79 

Figure A.7:  JMP Distribution Data for Heap Size of 256 MB (Part 1) ........................... 80 

Figure A.8:  JMP Distribution Data for Heap Size of 256 MB (Part 2) ........................... 81 

Figure A.9:  JMP Distribution Data for Heap Size of 256 MB (Part 3) ........................... 82 

Figure A.10:  JMP Distribution Data for Heap Size of 384 MB (Part 1) ......................... 83 

Figure A.11:  JMP Distribution Data for Heap Size of 384 MB (Part 2) ......................... 84 

Figure A.12:  JMP Distribution Data for Heap Size of 384 MB (Part 3) ......................... 85 

Figure B.1:  CPU Utilization for DES3, Heap 384 MB, and Data Size 1418 Bytes ........ 86 

Figure B.2:  CPU Utilization for DES3, Heap 384 MB, and Data Size 768 Bytes .......... 86 

Figure B.3:  CPU Utilization for DES3, Heap 384 MB, and Data Size 16 Bytes ............ 87 

Figure B.4:  CPU Utilization for RC4, Heap 384 MB, and Data Size 1418 Bytes .......... 87 

Figure B.5:  CPU Utilization for RC4, Heap 384 MB, and Data Size 768 Bytes ............ 88 

Figure B.6:  CPU Utilization for RC4, Heap 384 MB, and Data Size 16 Bytes .............. 88 

Figure B.7:  CPU Utilization for AES 256-bit, Heap 384 MB, and Data Size 1418 Bytes

.................................................................................................................................... 89 

Figure B.8:  CPU Utilization for AES 256-bit, Heap 384 MB, and Data Size 768 Bytes 89 

Figure B.9:  CPU Utilization for AES 256-bit, Heap 384 MB, and Data Size 16 Bytes.. 90 



 

xii 

Figure B.10:  CPU Utilization for AES 128-bit, Heap 384 MB, and Data Size 1418 Bytes

.................................................................................................................................... 90 

Figure B.11:  CPU Utilization for AES 128-bit, Heap 384 MB, and Data Size 768 Bytes

.................................................................................................................................... 91 

Figure B.12:  CPU Utilization for AES 128-bit, Heap 384 MB, and Data Size 16 Bytes 91 



 

xiii 

List of Tables 

Page 

Table 1: SunJSSE supported cipher suites [Sun03].......................................................... 48 

Table 2: Average/Standard Deviation of Maximum Number of Secure Sockets............. 54 

Table 3: Averages for DES3 Maximum Number of Secure Sockets................................ 55 

Table 4: Standard Deviation for DES3 Maximum Secure Sockets .................................. 55 

Table 5: ANOVA Table for Maximum Socket Analysis.................................................. 62 

Table 6: Log Transformed Socket Data............................................................................ 63 

Table 7: Factor Averages and Range for Secure Sockets ................................................. 64 



 

xiv 

AFIT/GCS/ENG-04-02 

Abstract 

The Java SSL/TLS package distributed with the J2SE 1.4.2 runtime is a Java 

implementation of the SSLv3 and TLSv1 protocols.  Java-based web services and other 

systems deployed by the DoD will depend on this implementation to provide 

confidentiality, integrity, and authentication.  Security and performance assessment of 

this implementation is critical given the proliferation of web services within DoD 

channels.  This research assessed the performance of the J2SE 1.4.2 SSL and TLS 

implementations, paying particular attention to identifying performance limitations given 

a very secure configuration.   

The performance metrics of this research were CPU utilization, network bandwidth, 

memory, and maximum number of secure socket that could be created given various 

factors.  This research determined an integral performance relationship between the 

memory heap size and the encryption algorithm used.   By changing the default heap size 

setting of the Java Virtual Machine from 64 MB to 256 MB and using the symmetric 

encryption algorithm of AES256, a high performance, highly secure SSL configuration is 

achievable.  This configuration can support over 2000 simultaneous secure sockets with 

various encrypted data sizes.  This yields a 200 percent increase in performance over the 

default configuration, while providing the additional security of 256-bit symmetric key 

encryption to the application data. 

 



 

15 

AFIT/GCS/ENG-04-02 

 
AN ANALYSIS OF THE PERFORMANCE AND SECURITY OF J2SDK 1.4 JSSE 

IMPLEMENTATION OF SSL/TLS  
 
 

1.  Introduction 

The Java SSL/TLS package distributed with the J2SE 1.4.2 runtime is a Java 

implementation of the SSLv3 and TLSv1 protocols.  Java-based web services and other 

systems deployed by the DoD will depend on this implementation to provide 

confidentiality, integrity, and authentication.  Security and performance assessment of 

this implementation is critical given the proliferation of web services within DoD 

channels. This thesis is organized into five distinct chapters; introduction, background, 

methodology, results and analysis, and the conclusion. 

The background chapter sets up the research effort by giving detailed background on 

Java and how it has evolved to become a secure architecture.  The Secure Sockets Layer 

(SSL) protocol is also explained since JSSE is just an implementation of this well 

documented standard.  The handshake and record protocol within SSL is mapped to show 

how the SSL process of encryption actually works.  Specifics of how JSSE implements 

SSL are given and a mapping is shown of all the Java classes used in the implementation.  

Security concerns of any SSL implementation include: 

• Malformed SSL communications which could cause incorrect ciphers to be 

used 

• Timing and cryptographic attacks on SSL  

• Padding attacks 



 

16 

• Denial of Service and resource exhaustion  

Chapter Three, the methodology chapter starts with the statement of the problem the 

research is addressing as well as detailing the four goals of the research and the 

hypotheses.  After the goals are defined, the boundaries of the system are laid out and 

defined.  The services provided by the system are documented and performance metrics 

are identified.  Parameters are identified and their static values are determined.  The 

workload to be used in the simulation program is defined and explained as are the factors 

that will determine how many experiments are going to be necessary to test the system.  

The evaluation technique is explained along with code segments used in the development 

of the simulation program.  Specific attention is focused on how the factors and 

parameters are implemented.  The chapter concludes with an explanation and details of 

the experimental design. 

Chapter Four focuses on the analysis and results of the experimentation.  The raw 

data obtained from the simulation scenarios are presented as well as the statistical 

techniques used to analyze the data.  The raw data considered vital to the presentation 

were appended to the paper as Appendices A and B.  The analysis of the data is explained 

and the answers are matched to the investigative questions of the research effort. 

The final chapter discusses the conclusions of the research and the significance of 

the effort.  Based upon the conclusions reached from the study, recommendations for 

action are detailed for setting up a JSSE implementation.  Since this research was unable 

to touch all associated areas, there are also recommendations for future research in this 

area. 



 

17 

2.  Background 

This chapter provides background information on the research topic.  In it, the 

history of security in Java is discussed as well as the basics of the Secure Sockets Layer 

(SSL) protocol.  These are intended to explain why SSL was incorporated into Java via 

the Java Secure Sockets Extension (JSSE). 

2.1 Introduction 

The next two sections explain the current Java Security Architecture and the JSSE 

implementation of SSL.  These sections provide information and sources on how SSL 

was implemented into Java. 

The final parts of the chapter provide background information on certain attacks to 

which the Java implementation of SSL may be susceptible.  Denials of Service and 

resource exhaustion possibilities are included.  Information on the tools of the research 

effort and a summary concludes the chapter. 

2.2 History of Security in Java 

2.2.1 Mobile Code 

The big advantage of Java is its portability.  Through the use of Java applets, 

developers are able to create code that can be downloaded directly into a Web browser.  

This technology is one of the first that turned the Web browser into a framework that 

could support the execution of applications downloaded over the Web [Pec00].  This 

creates a new paradigm for computing, which is in stark contrast to traditional desktop 

computing. 



 

18 

With traditional desktop computing, applications are loaded and executed by the user 

on a local machine.  Whenever updates to application software are needed, updates are 

obtained from sources such as CD, removable disks, and tapes.  The updates are then 

manually loaded.  Java applets are a new paradigm in which mobile code is downloaded 

dynamically to a local Web browser and automatically updated whenever a revisit to the 

Web site from where the code was downloaded is made [McG02]. 

This grand vision is somewhat tempered by the fact that network data rates are not 

where they need to be for large updates [Pec00].  This limits the realistic size of the Java 

applets and therefore limits the complexity of the applications downloaded.  Another 

limiting factor is the performance of the Java Virtual Machine (JVM) implementations 

equipped with Web browsers. 

Despite the problems associated with mobile code provided by Java applets, Sun 

Microsystems did realize there would be some implementation of these applets.  They 

further understood that for applets to be viable for business and government use, they 

would need security designed in at an early stage.  It is believed that most users want to 

limit access to their local machines when downloading software from remote Web sites.  

Many traditional desktop applications require access to the local file system, but with 

increased security risks due to malicious software, this access needs to be limited.  Java 

security developers have tried to keep pace with what seems to be critical at a given time.  

Java security has gone through several different iterations to keep pace with the current 

Web security environment [Pec00]. 



 

19 

2.2.2 Java 1.0 Sandbox Security Model 

The Java security model has evolved with each major Java version release.  Java 

version 1.0 platform provided a very limited security model known as the “sandbox” 

model.  In the sandbox model, only local code had access to all the resources (files, new 

network connections, etc.,) that were exposed and accessed by the JVM.  Code 

downloaded from remote sources such as applets only had access to a limited number of 

resources.  Thus, file-system access and the capability to create new connections were 

limited for remote code.  This was a major concern for JVM implementations equipped 

with Web browsers. 

The Java 1.0 security model was too restrictive and did not allow much flexibility 

for Java developers.  The ability to provide downloadable applications over the Web was 

being stifled by the fact that such applications could not perform key operations such as 

file access or create new network connections.  If Web-browser vendors treated remote 

code like local code, the path would have been opened for malicious code to corrupt the 

local machine.  Such an all-or-none model was replaced in Java 1.1, when a trusted 

security model was employed [Pec00]. 

2.2.3 Java 1.1 Trusted Code Security Model 

With the trusted code model, the user can optionally designate whether code 

“signed” by certain providers is allowed to have the full resource access it desires.  Thus, 

a trust relationship can be established for Microsoft Java code to run inside of your 

browser with full access to system resources much like the trust that exists when one of 

many Microsoft products is installed on the local system.  Code or applet signing permits 



 

20 

a company like Microsoft to sign its applet so that the origin of the code can be verified.  

The signed applet grants access to all system resources, much like the traditional desktop 

method.  Untrusted code can still be confined to the sandbox, since each individual applet 

is treated with a discrete set of rules. 

2.2.4 Java 1.2 Configurable and Fine-Grained Access Security Model 

The Java 2 platform (also called Java 1.2) has much finer-grained application 

security.  With this new model, local and remote code alike can be confined to use only 

particular domains of resources according to configurable policies.  Consider, for 

example a Java code segment called Foo.  Foo may have limited access to resources 

which are confined within a single domain (defined via the Java application’s access 

control list).  Some other Java code, Bar, may have access to a set of resources confined 

by some other domain [Pec00].  Domains of access and configurable security policies 

make the Java 2 platform much more flexible.  This design abstracted the distinction 

between remote and local code, allowing developers to focus on a wider range of security 

problems (secrecy, authenticity, integrity, etc.), instead of focusing on the mobile code 

and Java applet security problems.  Secure Sockets Layer (SSL) was an obvious choice to 

take care of some of these other security problems.  Before discussing Java 

implementation of SSL, a quick look at SSL basics is in order. 



 

21 

2.3 Secure Sockets Layer (SSL) Basics 

2.3.1 SSL Protocol 

The Secure Sockets Layer (SSL) protocol is the most widely used security protocol 

for authentication on the Internet [ViM02].  It secures data exchanged between a client 

and a server by encrypting it.  In general, it provides three of the tenants of data security: 

authentication, integrity, and confidentiality.  Authentication is the process of ensuring 

the “real” parties wishing to communicate do so and are not fooled by an entity 

impersonating an identity.  Authentication is achieved through the use of asymmetric 

public key encryption.  Integrity guarantees data exchanged with the server has not been 

modified along the way.  If it is, it can be detected through the use of the Message 

Authentication Code (MAC) [ViM02].  The MAC is generated during the SSL 

Handshake through a pseudo-random number generator and a secure hash algorithm.  

Finally, confidentiality is achieved through data encryption.  An eavesdropper cannot 

read the transmitted information by simply looking at the packets on the network.  The 

following sections give more detail about the two protocols that make up the Secure 

Sockets Layer protocol. 

a. Handshake Protocol 

The SSL HandShake Protocol is the most complex part of SSL.  It enables a 

server and client to authenticate each other, as well as negotiating encryption, 

MAC algorithm, and cryptographic keys.  It is used before any application data 

is sent.  Figure 1 shows a Handshake Protocol session. 

 



 

22 

SSL HANDSHAKE PROTOCOL 

 

Figure 1: SSL Handshake Protocol 
 

b. Record Protocol 

When data is being transmitted, the Record Protocol receives unencrypted 

data from the higher layer (Handshake Protocol) and changes it into SSL 



 

23 

CipherText.  The record layer fragments information blocks into TLSPlaintext 

records containing 214 bytes or less of data. Client message boundaries are not 

preserved in the record layer (i.e., multiple client messages of the same 

ContentType may be coalesced into a single TLSPlaintext record, or a single 

message may be fragmented across several records) [RFC2246].  It compresses 

the data and appends the Message Authentication Code (MAC).  Finally, before 

transmitting the data, it is encrypted with a shared symmetric key.   

If data is being received, the Record Protocol receives SSL CipherText from 

the TCP layer and decrypts using the shared symmetric key.  It uses the MAC to 

verify the integrity of the message and decompress the data.  Before sending the 

unencrypted data to the higher layers, it reassembles the fragmented data.  Figure 

2 depicts a Record Protocol session. 

 

Figure 2: SSL Record Protocol 
 



 

24 

2.3.2 Cipher Suites 

Cipher Suites are the building blocks SSL uses to provide authentication, integrity, 

and secrecy.  They are used in both of the SSL protocols and are selected based upon the 

handshake between the server and the client.  Since not all clients and servers are the 

same, SSL supports many different types of cipher suites.   

The two different SSL cryptographic algorithms, asymmetric and symmetric, use a 

combination of the available cipher suites to provide secure communications between the 

client and the server.  Which suite is selected is based upon the sensitivity of the data 

involved, the speed of the cipher, and the applicability of export restrictions on the 

stronger encryption algorithms. 

The asymmetric algorithm is used in the handshake protocol to authenticate the 

different parties, generate shared keys and secrets.  Asymmetric algorithms use much 

more complex numbers than do symmetric algorithms and are generally slower to process 

[ViM02].  These algorithms use a public/private key combination for authentication.  The 

public key can be known by anyone.  Only the owner knows the private key.  The public 

key is used by the client and server to encrypt and decrypt the premaster (used to generate 

the smaller shared symmetric key).  The public key is an inverse prime of the private key.  

This inverse property allows the server to decrypt a message encrypted with the 

corresponding public key.   

Symmetric algorithms are used to encrypt and verify the integrity of SSL records 

(application data).  A symmetric algorithm is used for the large data streams due to the 

speed with which the data can be encrypted and unencrypted.  Speed is critical when 



 

25 

maintaining a high traffic server.  The symmetric key is passed between the client and the 

server via the asymmetric method. 

Listed below are some of the cipher suites offered in most SSL implementations.  

a. DES – Data Encryption Standard [NIST99] 

b. DSA – Digital Signature Algorithm [NIST00] 

c. KEA – Key Exchange Algorithm [NIST98] 

d. MD5 – Message Digest algorithm developed by Rivest [RFC1321] 

e. RC2 and RC4 – Rivest ciphers developed for RSA Data Security [RFC2268] 

f. RSA – A public-key algorithm for both encryption and authentication.  

Developed by Rivest, Shamir, and Adleman [RFC2437] 

g. RSA key exchange – A key exchange algorithm for SSL based on the RSA 

algorithm [NIST00] 

h. SHA-1 – Secure Hash Algorithm, developed by the U.S. Government [NIST95] 

i. Triple-DES – DES applied 3 times [NIST99] 

2.4 Java Security Architecture 

The Java security architecture is made up of three different parts.  These parts 

are the Core Java Security Architecture which contains the basic security 

capabilities, the Java Cryptography Architecture (JCA) which allows basic 

cryptography functionality for Java applications, and the Java Security Extensions 

(JSE) which allow various third party vendor implementations via standard 

interfaces such as SSL. 



 

26 

2.4.1 Core Java 2.0 Security Architecture 

The Core Java 2.0 Security Architecture has seven components.  The following is a 

short description of each.  The byte code verifier verifies that the byte codes being loaded 

from Java application code external to the Java platform adhere to the syntax of the Java 

language specification.  The class loader is responsible for actual translation of byte 

codes into Java class constructs that can be manipulated by the Java runtime 

environment.  In the process of loading classes, different class loaders may employ 

different policies to determine whether certain classes should even be loaded into the 

runtime environment.  The class loader and the Java 2 platform classes limit access to 

valued resources by intercepting calls made to Java platform APIs and delegating 

decisions as to whether such calls can be made to the security manager.  Java 1.0 and 1.1 

made exclusive use of a security manager for such decision making, whereas Java 2 

applications uses the access controller for more flexible and configurable access control 

decision making.  Finally, execution of code would not be possible without the runtime 

execution engine.  Access control was a significant addition to the Java 2 security 

architecture.  It extended the security model to allow configurable and fine-grained 

access control.  Java 2 permissions have configurable and extendable ways to designate 

access limitations and can be associated with valued resources.  Java policies provide the 

mechanisms needed to actually associate such permissions with valued resources in a 

configurable way.  Finally, the ability to encapsulate domains for access control are 

provided with the core Java 2 security model [PeC00]. 



 

27 

2.4.2 Java Cryptography Architecture 

The Java Cryptography Architecture (JCA) provides an infrastructure for performing 

basic cryptographic functionality with the Java platform.  The scope of cryptographic 

functionality includes protecting data against corruption using basic cryptographic 

functions and algorithms.  Cryptographic signature generation algorithms used for 

identifying sources of data and code are also built into the JCA.  Because keys and 

certificates are a core part of identifying data and code sources, APIs are also built into 

the JCA for handling such features. 

Even though the JCA is part of the built-in Java security packages as defined in the 

core Java 2 security architecture features, it is separate due to the JCA’s underlying 

service provider interface.  Different cryptographic implementations can be plugged into 

the JCA framework without affecting the Java applications.  The Object Oriented method 

by which the security framework is built allows this.  For developers who are not sure or 

do not care what cryptographic functions are used, there is a default set of cryptographic 

functions that are instantiated when JCA is used. 

2.4.3 Extensions 

a. Java Cryptography Extension 

The terms encryption and cryptography are sometimes used interchangeably.  

However, Sun Microsystems Inc. (referred to hereafter as Sun) adheres to a 

cryptographic definition that includes basic data integrity and source identity 

functions supported by the JCA.  Encryption are those functions used to encrypt 

blocks of data for the added sake of confidentiality until the data can be 



 

28 

subsequently decrypted by the intended receiver.  The Java Cryptography 

Extension (JCE) is provided as a Java security extension for these auxiliary 

encryption purposes.  It could be argued that encryption is a core aspect of any 

secure system.  However, Sun has purposely made JCE an extension to the Java 

architecture largely due to U.S. export restrictions on encryption technology.  If 

JCE was a core part of the Java architecture, exportability of the Java 

architecture itself would be hampered.  Although many commercial-grade 

encryption technologies have been developed by third parties, JCE includes a 

standard service provider and application programmer interface model.  Thus, 

different commercial-grade encryption implementations can be used and still 

provide the programmer with the same API to the different underlying 

implementations.  Another difference between the JCE and JCA is that the JCA 

primarily supports data protection for integrity via message digests and provides 

a means for identification of data, objects, and code using signatures, keys, and 

certificates.  The data, objects, and code are never encrypted.  This is part of 

JCE.  Where JCA relies on asymmetric public and private key infrastructure for 

secure identity, JCE relies on a symmetric key infrastructure for confidentiality. 

b. Java Secure Socket Extension (JSSE) 

It is important to describe the JSSE in context where it fits into the Java 

Architecture.  Since SSL is one of the more commonly used encryption-based 

protocols for integrity and confidentiality, Sun developed the JSSE as an 

extension to the Java security architecture.  JSSE provides a standard interface 



 

29 

along with an underlying reference implementation for building Java 

applications with SSL.  Different commercial-grade SSL implementations can be 

used with JSSE and still provide the same interface to the applications developer.  

This has advantages and disadvantages since some SSL implementations may be 

more prone to attack than others.  Some of these attacks are discussed later.  

JSSE is more generic to provide a standard interface to support other secure 

socket protocols such as the Transport Layer Security (TLS) and Wireless 

Transport Layer Security (WTLS) protocols. 

c. Java Authentication and Authorization Service 

The Java Authentication and Authorization Service (JAAS) extension to the 

Java security architecture was developed to provide a standard way to limit 

access to resources based on an authenticated user identity.  Thus, standard APIs 

for login and logout are provided such that a standard interface is available for 

passing around secure user credentials and context.  This makes it possible to 

swap in and out different underlying authentication model implementations.   

2.5 JSSE Implementation of SSL 

There is little open-literature on specific instances of where JSSE’s implementation 

is significantly different than that of most other implementations.  Building bad 

cryptographic systems is very easy to do, while building strong cryptographic systems is 

very hard and time consuming [Sch98].  Sun chose to use a cryptographic 

implementation that has been improved upon for a number of years and is now an 

accepted standard of the Internet Engineering Task Force.  This section explains the key 



 

30 

classes used in the JSSE Application Program Interface (API).  Keeping that in mind, a 

brief examination of the major class relationships for a JSSE SSL connection is given. 

For secure communication, both ends of an SSL connection (server and client) must 

be SSL-enabled.  Within the JSSE API, the endpoint class of the connection, and one of 

the core classes, is the SSLSocket.  In Figure 3 below, the major classes used to create 

SSLSockets are laid out in a logical ordering [Sun03]. 

 

Figure 3: JSSE classes used to create SSLSockets [Sun03]. 
 

An SSLSocket is created by either an SSLSocketFactory or an SSLServerSocket 

accepting an in-bound connection (See Appendix C for a description of the classes and 

functions).  Both SSLSocketFactory and SSLServerSocketFactory objects are created by 

an SSLContext.  Additionally, there are two ways to obtain and initialize an SSLContext. 



 

31 

The simplest is to call the getDefault method on either of the Factory classes.  This 

causes a default KeyManager, TrustManager, and a secure random number generator to 

be created.  This process uses key material found in the default keystore as determined by 

system properties described in “Customizing the Default Key and Trust Stores, Store 

Types, and Store Passwords” section of the JSSE Reference Guide for Java 2 SDK 

Standard Edition V1.4.2 [Sun03]. 

Another approach that gives the caller the most control over the behavior of the 

created SSLContext, is to call the static method getInstance on the SSLContext class, and 

initialize the context by calling the init method.  This method takes three arguments 

(array of KeyManager objects, array of TrustManager objects, and a SecureRandom 

random number generator.  This allows the caller to dictate what cipher suites are 

allowed when creating the SSLSession.  For instance, DES is a valid algorithm (56 bit 

key) but not very strong due to its short key length.  DES3 is a more secure solution to 

implement on the session, though not necessarily the most efficient.   

Although key length is important, it is actually a minor player in building secure 

cryptographic systems.  It is a piece of the puzzle, but even a 168-bit key (DES3) does 

not protect the data if other parts of the cryptographic system itself are inherently flawed 

[Sch98].  There are many avenues of attack on a network connection [Rei96].  The next 

few sections look at some other ways to attack a cryptographic system. 



 

32 

2.6 Malformed SSL Communications 

This section covers items of interest that should be validated during the testing phase 

of any application.  The valid fields and ranges associated with the SSLSession 

communication between the client and the server are explained below.  

2.6.1 Malformed SSL Messages.   

Earlier sections described how SSL communications occur at the TCP and SSL 

protocol levels.  Software can store input values or the results of computations internally 

in one or more data structures to be retrieved or passed for use in computation or output 

generation.  Any type of software is set up for failure if it stores illegal data.  So, care 

must be taken to keep the data structures free of such corruption [Whi03].  The two major 

areas to focus on for SSL are the legal ranges of the fields within the protocols that make 

up SSL.  We focus on the two that are most used; the Record and Handshake Protocols. 

2.6.2 Correctness of Cipher Suite Handling 

Another area of concern within SSL communications is the correctness of the cipher 

suites.  Each side of an SSL session is supposed to be able to have a list of preferred 

cipher suites and what order they appear.  A couple of questions need to be answered to 

determine if there are weaknesses in this area for the JSSE implementation.  Does JSSE 

implement this list correctly?  Some older SSL implementations did not, and thus allowed 

an unscrupulous server to force a client to use a weaker cipher suite than it should.  Also, 

does JSSE allow this kind of attack? 



 

33 

2.7 Timing and Cryptographic Attacks on SSL 

This section discusses additional mechanisms hackers may use to break SSL 

encryption.  Specifically, padding attacks, timing attacks, and random number generation 

are discussed.  These attacks are not aimed at finding weaknesses within an encryption 

algorithm.  At this point, the hacker is assuming the proverbial front door is locked.  

Now, the hunt is for weaknesses in the implementation of the cryptography.  This is 

analogous to using a six inch steel front door only to leave all windows opened. 

2.7.1 Padding Attacks 

Padding is used in encryption algorithms to hide the length of the actual data and 

prevent certain dictionary; replay/déjà vu attacks on encrypted data.  One thing 

cryptographers have to do is make sure any fix or patch put in place does not create 

additional problems.  Unfortunately, this is difficult to do.  This opens the system for 

padding attacks.  Basically, this can occur if an attacker knows the algorithm used to 

institute the padding (Secure Hash Algorithm (SHA), Message Digest-5 (MD5), etc.,) 

and the algorithm is not sufficiently random or strong.  The attacker will find a way to 

derive important data about the cleartext or even about the factorization of N, where N is 

the RSA modulus [Nac99].  With the factorization of N, the public and private keys used 

to encrypt and decrypt the message can be derived.  The Java 2 Standard Edition 1.4.1 

implementation of the Java Cryptography Extension has several different options to 

choose from.  They include: 

1. No padding 

2. Optimal Asymmetric Encryption Padding 



 

34 

3. PKCS5Padding – Password-Based Encryption Standard 

4. SSL3Padding – defined in SSL Protocol Version 3.0 

This last option is offered in SunJCE but is not supported.  None of these padding 

algorithms, except “no padding”, are known to have any inherent flaws. 

Another example of a padding attack, the Bleichenbacher attack isn’t really a true 

padding attack [BoB03].  This attack takes advantage of a poor implementation of 

padding.  In PKCS version 1, the padding algorithm added a 16-bit “02” to the beginning 

of the packet.  If we know the first two characters, this is usually enough to break the 

encryption.  For example, suppose Ivan intercepts a ciphertext C intended for Bob and 

wants to decrypt it.  To mount the attack, Ivan picks a random r in the set Z from 1 – N, 

computes C’ = rC mod N, and sends C’ to Bob’s machine.  An application running on 

Bob’s machine receives C’ and attempts to decrypt it.  It either responds with an error 

message or doesn’t respond at all .  This allows Ivan to learn whether the most significant 

16 bits of the decryption of C’ are equal to “02”.  In effect, Ivan has an oracle that tests 

for him whether the 16 most significant bits of the decryption of rC mod N are equal to 

02, for any r of his choosing.  Bleichenbacher showed that such an oracle is sufficient for 

decrypting C [Bon99].  

2.7.2 SSL timing  

Timing attacks are simple in concept, but difficult to implement in a wide area 

network.  They basically send an encrypted message back to the target system.  But, 

instead of using the proper public key, they encrypt the message with the attacker’s guess 

of q where N is the RSA modulus and N = pq where p and q are sufficiently large primes 



 

35 

with q < p [Bob03].  The attack measures how much time it takes the target system to 

compute the fact that the message was encrypted with the wrong key.  This attack 

basically discovers “q” one bit at a time based upon the time it takes to receive an error 

response back from the target system.   

There are mechanisms that can be implemented to deny this activity.  One way and 

probably the simplest is to set some random wait time before calculating the key.  

Another more elegant way is called RSA hiding.  This techniques picks some random 

number r, where r is in the set of numbers 1 – N, e is the public key, d is the private key, 

C is enciphered M, and M is the original plain text message.  It then calculates C’ = C * re 

mod N.  Now it will apply d to C’ and obtains M’ = C’d mod N.  At the last step, the 

original message is recovered by setting M = M’/r mod N.  With this approach the target 

system is applying the private key to a random message derived from r.  Since there is no 

knowledge of the bitstream that d was applied to, the attacker cannot gain an advantage 

by measuring the time.  Not all implementations of SSL use RSA hiding.  At the present, 

it is unknown if JSSE utilizes it. 

2.7.3 Random Number Generation  

Practical cryptography relies on the availability of a good source of randomness or at 

least a good source of pseudo-randomness.  In Sun's JDK, the 

java.security.SecureRandom class provides security-grade pseudo-randomness. 

Sun's implementation of the default provider for this class uses the SHA1 algorithm 

as the foundation for its random number generation.  It seeds the pseudo-random number 

generator with a random value derived from thread timings.   



 

36 

2.8 Denial of Service and Resource Exhaustion Possibilities 

This area of the thesis investigates how well Java handles resource 

exhaustion or denial of service attempts.  To determine the performance, the 

number of JSSE SSL sessions allowed before system failure is examined. 

Additionally, a virtually identical OpenSSL server implementation will be used 

for determine possible differences in operational execution speeds resulting from 

different implementations.  Each implementation will be examined for modifiable 

are to determine the consumption of resources and the overall impact on security 

performance that may result. 

2.9 Tools 

The tools use in this research include: Windows perfmon utility, UNIX Top utility, 

Ethereal protocol analyzer, JMP statistical package, Microsoft Excel, and Turbo C.  The 

performance monitor utility in the Windows operating system provides the ability to 

record the application parameters such as memory and CPU utilization and then display 

them online in graph and report views.  It was used in this research to gather server 

performance data.  The UNIX Top utility gathers memory and CPU utilization data on 

UNIX systems in a variety of formats.  For this research, it was used to gather data on the 

Linux server.  Ethereal was used to verify data encryption, validate the correct algorithm 

was selected, and to gather data on the round trip time for secure socket data.  JMP is an 

interactive software tool especially designed for statistical visualization and exploratory 

data analysis.  Microsoft Excel was used to analyze the data from the Top and Perfmon 

utilities, and Turbo C was the programming language used to code various data 



 

37 

conversion routines to convert the data from the Top utility to a format to be used in the 

Excel analysis. 

2.10 Summary 

This chapter provides background information on the research topic.  In it, the 

history of security in Java is discussed, as well as the basics of the Secure Sockets Layer 

(SSL) protocol.  Its intent was to familiarize the reader as to why SSL was incorporated 

into Java via the Java Secure Sockets Extension (JSSE).  After history, the current Java 

Security Architecture and the JSSE implementation of SSL were discussed.  These two 

sections provided information and sources as to how SSL was implemented into Java.  

The chapter concludes with background information on certain attacks to which the Java 

implementation of SSL may be susceptible, as well as the tools used in this research.   



 

38 

 

3.  Methodology 

3.1 Introduction 

This chapter focuses on the methodology and simulation setup of the research effort.  

It includes the problem definition, goals and hypothesis of the research.  It also defines 

the system boundaries, system services, and performance metrics.  From those 

definitions, the parameters and factors are identified.  The chapter concludes with the 

experimental design, the evaluation technique, and the workload. 

3.2 Problem Definition 

The added flexibility and security provided by JSSE is attractive to commercial 

companies as well as government organizations.  Before the use of the JSSE libraries 

becomes widespread within the DoD, it’s prudent to perform an analysis on the code to 

find its strengths and weaknesses.  

3.2.1 Goals and Hypothesis 

The goals of this research are to determine the following:  

• Does JAVA 1.4.2 use RSA blinding to prevent cryptographic timing attacks?  

It is believed that Java implemented the RSA blinding technique.  This 

research determines if this is true and if it is the default configuration. 

• Compare similar implementations of JSSE’s implementation of SSL and 

OpenSSL’s implementation of SSL.  Specifically, determine the point at 

which each system’s resources become exhausted and become unusable to the 



 

39 

SSL users, and also determine what/if any performance differences in terms of 

maximum number of secure sockets are derived from using 128, 192, and 256 

bit symmetric keys within the AES, DES3, and RC4 encryption algorithms.  

Between the three different algorithms, AES is expected to perform 

significantly better since it’s one generation ahead of the other two algorithms, 

and was selected through open competition to become the new standard 

replacing DES [NIST01].  The increased size of the symmetric keys will 

likely impact performance, though to what degree is unknown.  Even though 

128-bit symmetric key encryption is widely acknowledged as being virtually 

impossible to break through brute force, 192 or 256 would be better as long as 

there is not a significant reduction in speed. 

3.2.2 Goal 1 Approach (Timing Attack Protection) 

The second goal involves a well-known cryptographic vulnerability: timing attacks.  

Timing attacks enable an attacker to extract secrets from a secure system by observing 

the amount of time taken by the system to respond to various requests.  Until recently, 

these attacks were thought to only apply to slower hardware systems such as smartcards.  

Attacks on web servers were unlikely since the decryption time of the encrypted text are 

masked by the many concurrent processes running on the system, as well as the latency 

introduced by propagation delay of networks in the client-server environment.  Research 

at Stanford University has demonstrated these assumptions were false [BoB03].  The 

research conclusively showed that in an OpenSSL application it was indeed possible to 

implement a timing attack across a network against a RSA keying system [BoB03].  They 



 

40 

suggest a RSA blinding scheme to mask the calculation time required for decryption.  

During the research, it was determined with the release of Java J2SDK 1.4.2 RSA 

blinding is automatically implemented with the built in JSSE libraries.  No further work 

was accomplished on this portion of the research.   

3.2.3 Goal 2 Approach (Performance Comparison) 

As a final goal, a performance comparison between four popular symmetric 

encryption algorithms provided in Java’s implementation of SSL is conducted. 

Specifically, the point at which each system’s resources are exhausted and the system is 

unusable to the SSL users is determined.  Symmetric key size, JVM heap size, and 

symmetric encryption algorithm are all factors for this analysis.   

3.3 System Boundaries 

The system under test (SUT) is shown in Figure 4 and includes the SSL over TCP 

protocol system and the operating system network stack.  The SUT does not include the 

workstations or servers, nor does it include any of the routers or physical wiring.   

 

Figure 4: System Under Test 

 
The components under test (CUT) are shown in italics in Figure 4.  It includes the 

operating system and the JSSE implementation of SSL.  Although there are other 

SSL

TCP

JSSE 



 

41 

implementations of SSL, this effort is limited to JSSE.  Comparisons drawn between 

Win2000 and Redhat Linux should be based on a JSSE implementation on both operating 

systems.   

3.4 System Services 

The service provided by the system is an encrypted channel where data is securely 

passed.  Possible outcomes are: 

1. A successful secure transmission of data – the data is transferred between the 

client and server successfully and encrypted. 

2. An unsuccessful transmission of data – the data does not reach its destination. 

3. An unsecure transmission of data – the data is transferred between the client 

and server, but it is sent unencrypted. 

3.5 Performance Metrics 

The output performance metrics of this research are tied to the second goal defined 

above.   The only metric for Goal 2 is the maximum number of secure sockets created 

between the clients and the server.  The possible outcome of an unsecure transmission of 

data is excluded as a metric because a properly verified and validated SSL simulation 

does not send data in the clear. 

3.6 Parameters 

3.6.1 System 

The system parameters include: 



 

42 

• JSSE version 1.0.3 is the standard packaged with Java SDK version 1.4.2 SE.   

• The Cipher Block Chaining encryption mode of the symmetric keys is used.  

• Block encryption requires padding to fill out the remainder of an unused 

packet.  There is an option to not use padding, but it’s not secure since it 

reveals the length of the data being sent, and within the confines of SunJSSE 

provider, it would preclude using symmetric encryption at all [Sun03]. 

• Symmetric key size is used because it directly impacts the performance and 

security of the data transmission. 

• Hardware: 1GHz Intel Pentium III, 512 MB RAM, 20 GB HDD, 100 Mbit 

Fast Ethernet, Linux host on NIS domain with 1 server, Win2000 host on 

Win2000 domain with 2 domain controllers.   

3.6.2 Workload 

Workload parameters are limited to the number of concurrent SSL connections and 

the size of the data transmission.  The concurrent SSL connections are used to establish 

when the SSL server is unable to service any more connections.  The size of the data 

transmission is fixed so other factors can be studied. 

The workload is applied within the logic of the simulation program.  Each SSL 

connection is created as individual threads, and pauses for one second after every 

successful connection (see Figure 5).  The one second pause is used to prevent premature 

overloading of the server.  Also associated with the workload is the number of SSL 

sockets each client creates.  A maximum number of 600 were implemented for each 

instantiation of the client software.  The number 600 was chosen so as not to reach the 



 

43 

~734 socket maximum identified earlier in the pilot studies for a default heap size.  The 

default heap size on the client JVM was not changed as part of the experiment.  As the 

clients hit their maximum socket limit, more clients were initialized in order to reach the 

server maximum SSL socket limit.  All the initialized sockets continued to pass traffic 

after initialization until the server reached it maximum limit. 

 

Figure 5:  Multiple thread code 
 

The size of the data transmission simulates three different types of SSL applications.  

The first data size of 16 bytes simulates an application with small data transactions.  This 

is the smallest data size available for SSL data using cipher block chaining.  Cipher block 

chaining effectively expanded any data block to the next 16 byte value.  The second data 

size of 1418 bytes simulates large data transactions.  Pilot studies showed that a data size 

of 1418 bytes was needed to completely fill the 1500 bytes of an Ethernet Frame.  The 

third data size was chosen to split the difference between the first two data sizes and the 

data size of 768 was arbitrarily chosen.   



 

44 

3.7 Factors 

Factors, their justification and values are listed below: 

• Symmetric Key Size:  128, 168, and 256-bit. The key lengths are chosen 

based on the encryption algorithm and on analysis by an ad hoc group of 

cryptographers and computer scientists [BlD96].  According to the analysis, a 

90-bit key is the minimum needed today to ensure the security of a symmetric 

key system against a brute force attack.  Although this analysis is seven years 

old, it has held true over the past few years.  For instance, there have been 

some successful brute force attacks on 128-bit symmetric key encryption, but 

the attacks have taken months to perform.  The 128-bit key is the unofficial 

standard today, 168 bit is the only size allowed in DES3, and 256 is the largest 

key size currently available in Java 1.4.2 with the AES algorithm.  The 128-bit 

keys are expected to be faster. 

• Encryption Algorithm: RC4, AES, and DES3.  These algorithms are some of 

the most commonly used today.  AES lends itself to comparisons since it is 

the only one currently available in different key sizes within the Java 1.4.3 

code.  AES is expected to be a faster algorithm. 

• Operating System:  Windows 2000 and RedHat Linux 7.3 were chosen so 

some comparison can be drawn between two different SSL implementations.  

The JSSE version of Windows 2000 and Linux is stable and is used for 

analysis on both systems.  The Linux implementation of JSSE will likely be 

faster than the Win2000 implementation of JSSE. 



 

45 

3.8 Evaluation Technique 

As with the performance metrics, the evaluation techniques only apply to the fourth 

goal.  The other three goals were met by verification of certain design methodology 

(range checking, defaults of Sun’s PRNG, and the implementation of RSA blinding in the 

latest JSSE libraries).  A prototype JSSE program was developed to determine the 

maximum socket limit when implementing SSL.  The simulation program is validated by 

developing the program in accordance with a highly secure construct available within a 

JSSE program.  A less secure design could enable more sockets to be established before 

server failure by not taxing the processor or memory with long encryption key 

calculations.  The design addressed the hash function, the asymmetric encryption 

algorithm, and symmetric key encryption.  The next several sections layout the design 

and how these functions were implemented to provide a secure simulation. 

3.8.1 Cryptographic Hash Function 

A cryptographic hash function is similar to a checksum. Data is processed with an 

algorithm that produces a relatively small string of bits called a hash. A cryptographic 

hash function has three primary characteristics: it is a one-way function, meaning that it 

is not possible to produce the original data from the hash; a small change in the original 

data produces a large change in the resulting hash; and it does not require a cryptographic 

key [Sun03].   

When applying a hash to the message authentication code, it is sometimes referred to 

as a HMAC.  HMAC can be used with any cryptographic hash function, such as Message 

Digest 5 (MD5) and Secure Hash Algorithm (SHA), in combination with a secret shared 



 

46 

key. HMAC is specified in RFC 2104.  These also happen to be the two hash functions 

considered in the development of the simulation.  SHA-1 was chosen because of it’s 

slightly stronger encryption due to it longer hash value (160 versus 128 bit for MD5).  No 

known attacks against SHA were found, while there have been a few against MD5 that 

could not be extended (to show inherent weakness in the algorithm).  There is a slight 

tradeoff in speed.  More information about MD5 and SHA can be found in the RFCs 

(1321 for MD5 and 3174 for SHA) 

3.8.2 Asymmetric Encryption 

 The asymmetric encryption setup was more problematic in its implementation than 

other security functions.  The implementation involved server side only authentication 

(ie., an https type application) with 1024 bit RSA Public Key encryption.  The public key 

is wrapped in an X.509 certificate and is self signed (no certificate authority was used).  

Typically you would not use a self-signed certificate unless you trusted the source.  For 

the simulation, a trusted third party was not necessary.  After the server’s public key was 

wrapped in a certificate, it was physically copied to each client used in the simulation.  

The server and client simulation programs were then written to incorporate a keystore 

and a truststore.  The instructions for configuration and Java keytool usage is laid out in 

the JSSE Reference Guide [Sun03].  Figure 6 shows the source code used in the 

simulation program to implement the asymmetric key encryption design. 



 

47 

 

Figure 6: Source code for asymmetric key encryption. 
 

3.8.3 Symmetric Key Encryption 

The symmetric key encryption algorithms were chosen based on the factors of this 

analysis.  JSSE has a default list of cipher suites it implements, and chooses them based 

on Table 1. 



 

48 

Table 1: SunJSSE supported cipher suites [Sun03]. 
Supported Cipher Suites in Default Preference Order 

 Name Enabled by 
Default 

New in  
J2SE 1.4.2 

 SSL_RSA_WITH_RC4_128_MD5  X   

 SSL_RSA_WITH_RC4_128_SHA  X   

 TLS_RSA_WITH_AES_128_CBC_SHA X X  

 TLS_DHE_RSA_WITH_AES_128_CBC_SHA X X  

 TLS_DHE_DSS_WITH_AES_128_CBC_SHA X X 

 SSL_RSA_WITH_3DES_EDE_CBC_SHA X   

 SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA X  X 

 SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA X   

 SSL_RSA_WITH_DES_CBC_SHA X   

 SSL_DHE_RSA_WITH_DES_CBC_SHA X X 

 SSL_DHE_DSS_WITH_DES_CBC_SHA X   

 SSL_RSA_EXPORT_WITH_RC4_40_MD5 X   

 SSL_RSA_EXPORT_WITH_DES40_CBC_SHA X X  

 SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA X X  

 SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA X   

 TLS_RSA_WITH_AES_256_CBC_SHA *   X 

 TLS_DHE_RSA_WITH_AES_256_CBC_SHA *   X  

 TLS_DHE_DSS_WITH_AES_256_CBC_SHA *   X  

 SSL_RSA_WITH_NULL_MD5     

 SSL_RSA_WITH_NULL_SHA     

 SSL_DH_anon_WITH_RC4_128_MD5     

 TLS_DH_anon_WITH_AES_128_CBC_SHA    X 

 TLS_DH_anon_WITH_AES_256_CBC_SHA *    X 

 SSL_DH_anon_WITH_3DES_EDE_CBC_SHA     

 SSL_DH_anon_WITH_DES_CBC_SHA     

 SSL_DH_anon_EXPORT_WITH_RC4_40_MD5     

 SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA     

 
Those items marked with an “*” require installation of the JCE Unlimited Strength 

Jurisdiction Policy Files.   



 

49 

This analysis only required four of the cipher suites, and one of these required the 

JCE Unlimited Strength Jurisdiction Policy Files.  These can be found at 

http://java.sun.com/j2se/1.4.2/download.html.  The four cipher suites used were: 

• SSL_RSA_WITH_RC4_128_SHA (128 bit RC4 encryption with SHA hash) 

• TLS_RSA_WITH_AES_128_CBC_SHA (128 bit AES encryption with SHA hash) 

• SSL_RSA_WITH_3DES_EDE_CBC_SHA (168 bit 3DES encryption with SHA 

hash) 

• TLS_RSA_WITH_AES_256_CBC_SHA (256 bit AES encryption with SHA hash) 

Figure 7 shows the simulation program code implementing each of the cipher suites.  

Only one cipher suite was instantiated on the client for each simulation run.  This ensured 

only the cipher suite being tested could be agreed upon by the server and the client. 

 

Figure 7: Symmetric key cipher suite implementation 

3.9 Experimental Design 

The experimental design is full factorial.  It tests the failure/resource exhaustion of 

the JSSE implementation.  The number of experiments required for a single sample value 



 

50 

of all the different combinations is:  4 (encryption algorithms) * 4 (heap sizes) * 3 (data 

sizes) = 48. 

To determine the number of repetitions for the experiments, some assumptions are 

made about the maximum number of sockets.  Based on pilot studies, the mean for a 

maximum number of secure sockets with the default heap size of 64 MB on the Java 

Virtual Machine (JVM) is 734.06.  Observed variability for the pilot study data is 2.8625 

sockets with a standard deviation of 1.69 sockets.   

Testing for normality was used to determine if the Central Limit Theorem could be 

used to determine how many replications should be accomplished of each simulation.  

The method used here is the Lilliefors test for normality.  The test basically compares the 

observed relative cumulative frequency distribution of the sample to that of the standard 

normal distribution.  The two curves in the middle of Figure 8 represent the cumulative 

distribution of the observed data and a standard normal curve.  Curves to either side 

represent the Lilliefors bounds for a sample size of 12 and a significance of 0.01 (99 

percent confidence).  If the observed relative cumulative frequency falls outside the 

bounds given for the specified sample size, then the data is not from a normal 

distribution.  Since the curve representing the observed data does not fall outside the 

bounds, we can be 99 percent confident that the data is from a normal distribution.  

Therefore, the data is considered normally distributed and the Central Limit Theorem is 

used to analyze the data.   



 

51 

Cumulative Distribution Comparison (Standard 
Normal)

0.000

0.200

0.400

0.600

0.800

1.000

-2.000 -1.000 0.000 1.000 2.000

Standardized Sample Value

Cu
m

ul
at

iv
e 

Re
la

tiv
e 

Fr
eq

ue
nc

y

Sample Cumulative
Frequency

Standard Normal
Cumulative
Frequency
12 Sample Upper
Bound

12 sample Lower
Bound

 

Figure 8:  Pilot Study (Lilliefors graph) 
 

Based on these observations, the following equations, and the assumption that 

normality will hold on larger heap and data sizes: 

1. )/,( nNx σµ≈  (sample mean calculation). 

2. ntxIC /*.. σ±=   (calculation for a Confidence Interval). 

Using previous assumptions about the mean and standard deviation, as well as a 

confidence interval of 90% and plugging those numbers into the equations: 

)4/8625.2(*353.206.734.. ±=IC = (730.692, 737.428). 

Therefore, four repetitions of the 48 experiments are likely needed.  A total of 192 

experiments is performed.  

3.10 Summary 

The focus of this chapter is on the simulation design and methodology of the 

research effort.  It includes the problem definition, as well as defined the system 



 

52 

boundaries, system services, and performance metrics.  From those definitions the 

parameters and factors were identified and discussed.  The chapter concludes with the 

experimental design, the evaluation technique, and the workload used in the analysis 

effort. 



 

53 

4. Analysis and Results 

4.1 Chapter Overview 

This chapter discusses the analysis and results of the research effort.  Simulation data 

is presented and explained in order to answer the investigative questions of Chapter 3.   

The chapter concludes with a summary of the findings. 

4.2 Results of Simulation Scenarios 

A quick scan of the data reveals that, as the heap size increases, so does the number 

of secure sockets that can be created (see Table 2).  This is because each socket requires a 

fixed amount of resources from the heap.  Creating sockets without closing any 

eventually uses up all the space allocated in the heap.  The first section of Table 2 shows 

the average number of sockets each encryption algorithm supports with the associated 

heap size.  There are twelve values averaged for each cell, three data sizes (16, 768, and 

1418) and four replications of each unique configuration.  The second section of Table 2 

shows the standard deviation for the values that were averaged in the first part. 

Appendix A shows the data gathered for the socket limit.  The naming convention is 

as follows:  AES128h64d1418_win indicates the AES 128-bit encryption algorithm, with 

a JVM heap size of 64 MB, an encrypted data size of 1418 bytes, and the simulation 

server was run on a Win2000 operating system.  



 

54 

Table 2: Average/Standard Deviation of Maximum Number of Secure Sockets 
 

Average RC4 AES128 AES256 DES3
64 MB 736 734 729 744
96 MB 1106 1104 1095 986
256 MB 2523 2289 2211 1673
384 MB 2589 2488 2412 1769

Standard DeviationRC4 AES128 AES256 DES3
64 MB 2 2 1 1
96 MB 3 3 2 199
256 MB 490 575 603 974
384 MB 720 869 904 1343

Heap 
size

Encryption Algorithm

Heap 
size

 
 

 
Another interesting result is the different maximum numbers of sockets between the 

encryption algorithms given a heap size of 256 and greater.  The standard deviation is a 

measure of variability in the data.  A rise in the standard deviation is a sign of increased 

variability in the data samples.  Table 2 provides some insight into different maximum 

number of sockets occurring in the different algorithms.  For DES3 the data variability 

increases with a heap size of 96 MB.  The other algorithms increased variability does not 

begin at this point. The DES3 simulations are used to explain what is happening. 

Table 3 shows the average maximum socket values recorded for the DES3 

simulations with heap sizes of 64 MB, 96 MB, 256 MB, and 384 MB.  As evident from 

Table 3, there is not much variance between the samples in the 64 MB heap size.  

However, a heap size of 96MB shows a significant drop (35 percent) in the number of 

secure sockets that can be created with a data size of 1418 bytes.  This shows that data 



 

55 

size is probably going to be a significant factor in the variance of the data.  This assertion 

is proved later on in this chapter when the variance analysis is conducted.   

Table 3: Averages for DES3 Maximum Number of Secure Sockets 
 

  Encrypted Data Size (bytes) 
 Average 1418 768 16

Heap Size 64MB 743 743 745
 96 MB 721 1117 1119
 256 MB 936 1095 2988
 384 MB 723 1003 3580

 
 

At this point, it appears something else besides heap size is limiting the maximum 

number of secure socket creation.  It is interesting that the 256 MB heap size showed 

improvement while the 384 MB heap size did not.  Taking this into account, we need to 

see if the mean is a good statistic to use for comparing the maximum number of sockets.  

For example, it is not very useful to use the mean when two sample values between 

replications are significantly different.  The standard deviation of the data, given in Table 

4, can help determine if this is the case.   

Table 4: Standard Deviation for DES3 Maximum Secure Sockets 
 

Standard Deviation 1418 768 16
64MB 1 1 1
96 MB 71 2 2
256 MB 42 34 18
384 MB 37 49 16

Encrypted Data Size (bytes)

Heap 
Size

 

 



 

56 

It is evident there is much more variability in the data for heap sizes of 256 and 384, 

and also for a heap size of 96 MB with a data size of 1418 bytes.  Since this is the case, 

the mean for those instances just show that generally speaking, there is a decrease in the 

maximum number of sockets as the data size gets larger.  The high variance in the data at 

the 256 MB and 384 MB levels still falls within acceptable limits for the four replication 

simulation.  The next section evaluates what resource could be limiting the maximum 

socket number, and provides answers as to why it’s impacting the variance of the 

simulation data more so than the smaller heap sizes did. 

A computer system has a finite set of resources.  The limiting resource could be a 

number of things (main memory, virtual memory, CPU, and network bandwidth).  By 

limiting the heap size to a fraction (75 percent) of available main memory, it was made a 

factor for variation and analysis.  It was also a resource capable of being monitored for 

resource exhaustion.  Given the controlled environment, network bandwidth and CPU 

utilization are the only other resources that could account for the high data variance 

across simulations.  Network bandwidth is a limiting factor if the socket creation fails due 

to waiting on network bandwidth where the client request times out before receiving an 

answer from the server.  In order to rule out network bandwidth, the round trip time for 

DES3 secure socket connections was examined.  Since a heap size of 96 MB had 

significant variation in the maximum number of sockets created, this data is examined to 

see if network bandwidth had an impact.  If network bandwidth was responsible for the 

inconsistencies, there should be a trend upwards over time.  Figures 9, 10, and 11 show 

the round trip time for the DES3 samples with a heap size of 96 MB. 



 

57 

 

Figure 9: Round Trip Time (RTT) for 16 Byte Data Packets, 96 MB Heap, and DES3 
Encryption. 

 

 

Figure 10: Round Trip Time (RTT) for 768 Byte Data Packets, 96 MB Heap, and DES3 
Encryption 



 

58 

The y-axis on these figures represent the round trip time in seconds for one data 

packet.  The x-axis represents the sequence number of the Ethernet packets.  If bandwidth 

was causing the bottleneck, some type of rise along the y-axis indicating an increase in 

the RTT would be observable.  This is not occurring, and therefore network bandwidth 

can be ruled out as the limiting resource.  In the 16-byte and 768-byte simulations, the 

resource limit was on the heap size.  This was demonstrated by the “out of memory” error 

received while running the simulation. 

 

Figure 11: Round Trip Time (RTT) for 1418 Byte Data Packets, 96 MB Heap, and DES3 
Encryption 
 

For the 1418 byte data size neither the memory nor the network bandwidth is the 

limiting resource because there was no “out of memory” error, and Figures 9, 10, and 11 



 

59 

show network bandwidth was not the issue.  Therefore, the CPU utilization must be 

considered as a limiting performance factor.  Using the same logic as in the network 

bandwidth analysis, the analysis once again used the DES3 encryption algorithm with a 

heap size of 96 MB.  If CPU utilization is the limiting resource, its graph over time 

should show an incline up towards 100 percent utilization.  This analysis examines the 

CPU utilization for the Java process.  Note that variability in the utilization can occur as 

the process waits for CPU time.  Figures 12, 13, and 14 illustrate that data sizes of 768 

and 1418 bytes have a much greater impact on the CPU utilization than a data size of 16 

bytes.   

 

Figure 12: CPU Utilization for DES3 Simulation With Heap Size 96MB and Encrypted 
Data Size of 16 Bytes 

 
When the memory resource (heap size) is used up, the program terminates giving an 

“out of memory” error.  Since each socket requires the same amount of resources, the 

difference between replications was very small.  However, when CPU was at 100 percent 

utilization, the program behaved more erratically.  Socket creations would sometimes fail 

DES3h96d16 CPU 

0.00 

20.00 

40.00 

60.00 

80.00 

100.00 

0 10 20 30 40  

Time(15 Second Intervals)

C
PU

 U
til

iz
at

io
n 

%
 



 

60 

and sometimes succeed.   Simulations were terminated when five consecutive secure 

connections were unable to be created and pass encrypted data.  It was difficult to predict 

whether this would occur or not when the CPU was fully utilized. 

 

Figure 13: CPU Utilization for DES3 Simulation With Heap Size 96MB and Encrypted 
Data Size of 768 Bytes 

 

 

Figure 14: CPU Utilization for DES3 Simulation With Heap Size 96MB and Encrypted 
Data Size of 1418 Bytes 

 

DES3h96d768 CPU Utilization 

0 
2
4
6
8

10

0 20 40

Time(15 Second 

C
PU

 U
til

iz
at

io
n 

DES3h96d16 CPU Utilization 

0.0

20.0

40.0

60.0

80.0

100.0

0 5 10

Time(15 Second Interval ie., 100 = 1500 

C
PU

 U
til

iz
at

io
n 



 

61 

The data shown in Appendix B illustrates the relationship between the number of 

sockets created and the associated CPU percentage for all simulations performed with a 

heap size of 384 MB. From these graphs, while all the algorithms hit 80 percent CPU 

utilization much faster when the encrypted data size is large (1418 bytes), DES3 and 

AES256 appear to be more affected, with DES3 being the most impacted.  This indicates 

the higher the symmetric key size, the more load on the CPU.  The CPU utilization 

presented here is only what is used by the Java process.  It is not the CPU utilization of 

every process on the server.   The data shown in Appendix B also indicates the 168-bit 

DES3 algorithm is not as efficient as the 256-bit AES256 algorithm.  This is based on 

how quickly the DES3 algorithm reached 80-100 percent CPU utilization.  This validates 

a reason why the AES algorithm was chosen as the new standard to replace DES3.  RC4 

and AES128 were much more efficient as far as CPU utilization, which is expected since 

these algorithms only use a 128-bit symmetric key.  Still to be determined is what has the 

most impact on the number of secure sockets that can be created between all the different 

factors (encryption algorithm - A, heap size - H, and encrypted data size - D).  This 

question is answered by performing an analysis of variance (ANOVA).  

Using the data in Appendix A, an ANOVA table is created to easily determine what 

factors have statistically significant impact on the maximum number of sockets that can 

be created.  There are three main effects, three first-order interactions, and one second-

order interaction.  Table 5 shows the ANOVA table used to perform the analysis. 

There were a total of 192 experiments used to analyze the maximum number of 

secure sockets created.  Appendix A lists the measured values from the experiments.  As 



 

62 

is seen, the number of sockets has a wide range, the ratio of which is 3300/698, or about 

5.  Performing a log transformation of the data stabilizes the variance in the data.  Table 6 

shows the transformed data. 

Table 5: ANOVA Table for Maximum Socket Analysis 

Component 
Sum of 
Squares 

Percentage 
of Variation

Degrees 
of 
Freedom

Mean 
Square 

F-
Computed 

F-
Table 

Significant 
at  0.05 
level 

SSY 1891.09  192     
SS0 1869.76  1     
SST 21.33 100 191     
Main Effects 
SSD 1.12 5.23 2 0.56 57.24 3.1 Significant 
SSH 6.83 32.04 3 2.28 233.68 2.72 Significant 
SSA 0.53 2.51 3 0.18 18.28 2.72 Significant 
First Order 
Interactions 
SSDH 8.32 39.02 6 1.39 142.31 2.2 Significant 
SSDA 0.01 0.07 6 0.002 0.24 2.2 Not 

Significant 
SSHA 0.41 1.91 9 0.05 4.65 2 Significant 
Second 
Order 
Interactions 
SSDHA 2.7 12.64 18 0.15 15.37 1.72 Significant 
Errors 
SSE 1.40 6.58 144 0.01 1   
 

 

 
 



 

63 

Table 6: Log Transformed Socket Data 
 

Algorithm Data Size 64 96 256 384
16 2.87 3.04 3.46 3.56

768 2.87 3.04 3.38 3.33
1418 2.87 3.04 3.20 3.22

16 2.86 3.04 3.47 3.56
768 2.86 3.04 3.34 3.31

1418 2.86 3.04 3.18 3.20
16 2.87 3.05 3.48 3.55

768 2.87 3.05 3.04 3.00
1418 2.87 2.86 2.97 2.86

16 2.86 3.04 3.47 3.55
768 2.86 3.04 3.44 3.37

1418 2.87 3.04 3.27 3.28
RC4

Heap Size

AES128

AES256

DES3

 

From Table 5, all the factors except the first order interaction between data size (D) 

and encryption algorithm (A) were statistically significant.  However, there were a couple 

that were much more significant.  Data size, heap size, and the first order interaction 

between data and heap size had the most impact on the variance (over 75 percent between 

those three).   

From this analysis, it can be concluded that data size and heap size have the most 

impact on the variance of the number of secure sockets that can be created given the test 

system. However, it is of primary interest to find the best combination of the three factors 

for providing efficient means to create the greatest number of secure sockets without 

reaching a system resource limitation.  The range method was used to find the average 

response corresponding to each level of the factor, and then to find the difference 

between the maximum and the minimum of the averages.  A factor with a large range is 



 

64 

considered important.  Table 7 shows the data for this method.  Table 7 columns indicate 

the level of the factor.  Data Size level 1 is 16 bytes, level 2 is 768 bytes, and level 3 is 

1418 bytes.  Algorithm level 1 is AES 128-bit, level 2 is AES 256-bit, level 3 is DES3 

168-bit, and level 4 is RC4 128-bit.  Heap Size level 1 is 64 MB, level 2 is 96 MB, level 

3 is 256 MB, and level 4 is 384 MB.  

Table 7: Factor Averages and Range for Secure Sockets 

16, 
AES128, 
H64

768, 
AES256, 
H96

1418, 
DES3, 
H256

RC4, 
H384

Range of 
Averages

Data Size 2091 1418 1170 none 921
Algorithm 1654 1612 1293 1737 444
Heap Size 735 1073 2174 2314 1579

From Table 7, the items in bold are considered the best in terms of ranges.  Data 

sizes are excluded from consideration since these values should not be limited based on 

the external performance limitations of the secure system. With a value of 1293 average 

sockets created, DES3 was the worse performing algorithm in the study.  AES128, 

AES256, and RC4 had similar performance statistics.  With the additional security 

provided by the longer key size in AES256, it is more attractive at this point than either 

AES128 or RC4.  For a heap size setting, it is believed that a heap size of 256 MB is 

better in this configuration, because it offered the greatest increase in performance.  It 

achieves an average of a 200 percent increase over a heap size of 64 MB, a 100 percent 

increase over a heap size of 96 MB, and just a 6 percent decrease over the average that 

was achieved with a 384 MB heap size  



 

65 

4.3 Investigative Questions Answered 

This section documents the answers for the investigative questions posed in Chapter 

3 of this document.  The questions and corresponding answers are documented in the 

next several sections of this thesis. 

4.3.1 RSA Blinding 

Does JAVA 1.4.2 use RSA blinding to prevent cryptographic timing attacks?  It was 

believed that Java implemented the RSA blinding technique.  This research determined 

that with the release of Java 1.4.2, it is indeed implemented and is the default.  In fact, no 

way was found to turn it off and still use RSA as the Public Key Encryption algorithm. 

4.3.2 Resource Exhaustion 

Another research question was to determine the point at which some resource on the 

system is exhausted and the system becomes unusable to SSL users.  This area also 

determines what, if any, performance differences in terms of maximum number of secure 

sockets are derived from using 128, 192, and 256 bit symmetric keys within the AES, 

DES3, and RC4 encryption algorithms.  Between the three different algorithms, AES was 

expected to perform significantly better.  This is due to the fact that it is one generation 

ahead of the other two algorithms, and was selected through open competition to become 

the new standard replacing DES [NIST01].  The increased size of the symmetric keys did 

impact performance, though with AES, not to a great degree with respect to maximum 

number of secure sockets (Table 7).  Even though 128-bit symmetric key encryption is 

widely acknowledged as being virtually impossible to break through brute force, 192 or 



 

66 

256 is better if there is not a significant reduction in speed.  This analysis implies that the 

best setup, with respect to getting the most secure sockets would be to use a heap size of 

256 MB, and the AES 256-bit symmetric key encryption.   

4.4 Summary 

This chapter discussed the analysis and results of the research effort.  The 

simulation data was presented.  This data revealed the best possible setup of the given 

factors with regards to getting the maximum number of secure socket connections while 

still maintaining the highest level of security.  The data was explained to answer the 

investigative questions posed in Chapter 3.  



 

67 

5.  Conclusions and Recommendations 

5.1 Research Overview 

The Java SSL/TLS package distributed with the J2SE 1.4.2 runtime is a Java 

implementation of the SSLv3 and TLSv1 protocols.  Java-based web services and other 

systems deployed by the DoD will depend on this implementation to provide 

confidentiality, integrity, and authentication.  Security and performance assessment of 

this implementation is critical given the proliferation of web services within DoD 

channels.   

This chapter discusses the conclusions of the research and talks to the significance of 

the effort.  The other sections of this chapter discuss the conclusions reached from the 

study, the significance of the research effort, recommendations for actions, and 

recommendations for future research. 

5.2 Conclusions of Research 

The research outcome centers around what steps should be taken to build a highly 

secure JSSE program while still allowing a maximum number of secure connections.  

Given the hardware constraints of this effort, it was determined that a server-side only 

authentication mechanism with a 1024-bit RSA asymmetric key would be used as a 

parameter to find the best combination of symmetric key size, symmetric key encryption 

algorithm, and JVM heap size for building a high performance, highly secure system. 

The best performance combination was a JVM heap size of 256 MB, the AES 

symmetric key encryption algorithm, and a symmetric key size of 256-bits.  Comparable 



 

68 

results were determined for heap sizes of 256 MB and 384 MB.  The main reason for 

staying with a 256 MB heap size was that it limits the impact on the physical memory of 

the server.  There was minimal value added since there was only an 8 percent increase 

between the two heap sizes in the maximum number of sockets that could be created by a 

server using the 256-bit AES encryption algorithm. 

5.3 Significance of Research 

This research is significant because it determines what parameters and factors to 

consider when developing a high-use Java JSSE server.  High-use is defined as being 

over 2000 simultaneous secure socket connections.  It also documented how to set up the 

application securely and provides source code that could be used as the security engine 

for a secure client/server application. 

5.4 Recommendations for Action 

It is recommended that before any development begins, a thorough investigation of 

the latest security issues associated with the development libraries should be determined.  

There were several security issues fixed from the Java J2SE 1.4 release to the J2SE 1.4.2 

release.  

The latest version of the development libraries should be used to the fullest extent 

possible.  Old applications written in previous releases should be reviewed to ensure they 

address all the latest vulnerabilities, and rewritten where necessary to utilize the security 

fixes implemented in the latest J2SE release.   



 

69 

Finally, based on the results of this effort, there is not a significant performance 

difference between 256-bit AES encryption and some of the more popular 128-bit 

symmetric encryption algorithms.  The 256-bit AES encryption mechanism does 

represent a significant increase in the ability to thwart brute force attacks.  It is suggested 

that organizations download the JCE Unlimited Strength Jurisdiction Policy Files and 

use the 256-bit AES algorithm for the secure transmission of data. 

5.5 Recommendations for Future Research 

This section is intended to capture all the correspondence and conversations with the 

National Security Agency (NSA) sponsor in defining exactly what this research was 

going to cover.  The following list of research extensions were of interest to the sponsor 

during the conduct of this investigation.  Before future work is attempted, coordination 

with the sponsor for elaboration of these topics is prudent. 

5.5.1 SSL standards compliance 

Topics: 

- Correct handling of SSL messages and roles. 

- Proper responses to invalid messages, including fail-secure behavior. 

- Error behavior including leakage of information in error messages. 

Tools and Techniques: 

- A good packet analyzer, like Ethereal 0.9.11. 

- Use a maliciously modified version of OpenSSL to do most of this testing.  



 

70 

5.5.2 SSL security configuration and lockdown 

Topics: 

- How are choices of cipher suites configured from code and in global configuration? 

- Are cipher suite choices enforced correctly on the client and on the server? 

- Server configuration of client authentication. 

- Access by application code to security information. 

- Degree to which application code can control SSL, including application code 

ability to configure SSL improperly. 

Tools and Techniques: 

- A good packet analyzer 

- An SSL debugging proxy might be good here 

- Mostly, this topic area will involve writing JSSE test code in Java, then sniffing 
traffic 
 

- Instrumented version of OpenSSL might be good 

This research effort covered a majority of this area.  However, there could be more 

focus put on specific items that can be derived from this area.  For instance, no testing 

was performed to create a misconfigured client that could possibly force a “secure” 

server to a more easily hacked symmetric key algorithm like DES 40-bit. 

5.5.3 PKI Security 

Topics: 

- Certificate management and trusted roots; how is integrity of cert storage protected, 

administered, and trusted. 



 

71 

- Ability to perform cert chain validation; RFC2459 and PKIX compliance, 

recognition and enforcement of X.509v3 certificate extensions, and use of CRLs, 

resistance to certificate chain spoofing. 

- Visibility of certificate operations to application code. 

- Date and validity interval handling. 

- Private key import capabilities and handling of PKCS#12 files. 

Tools and Techniques: 

- Mostly writing JSSE test code. 

- A good ASN.1/BER decoder, like dumpasn1. 

- A set of certificate chain test cases (e.g. from Santosh at U. of MD). 

- Ability to generate certificates and CRLs (probably OpenSSL is sufficient for this. 

5.5.4 JSSE/JCE randomization and key generation 

Topics: 

- Random Number Generation (RNG) operation and state exposure 

- RNG seeding, including JCE v. JSSE 

- RNG structure and reseeding 

Tools: 

- Some test code exercising JSSE crypto provider 

- Java debuggers 

- Java decompilers (This topic is likely to require some reverse-engineering of the 

Java code, because the source of the RNG is not available.) 



 

72 

5.5.5 Robustness of JSSE Implementation 

Topics: 

- Reaction to bad SSL packets. 

- Reaction to bad certificates. 

- Interoperability with other SSL implementations, especially at the 'edges' of the 

specification. 

 
- Susceptibility to timing attacks and other active cryptographic attacks (e.g. 

Bleichenbacher attack). 

- Susceptibility to resource exhaustion or other denial of service attacks. 

- Presence of information leaks (e.g. in padding, nonces, etc.). 

Tools: 

- Hacked SSL implementation (maybe OpenSSL). 

- Traffic generator (e.g. Hailstorm). 

- X.509 test case generator (NSA C4 can provide a simple one). 

This is another area that was partially covered by this thesis effort.  Bad SSL packets 

generated at the client were tested, but man-in-the-middle attacks were never performed 

in the simulations.  Timing attacks were addressed through research, not simulation and 

resource exhaustion limitations were found with given parameters and factors.  

Information leaks were lightly touched upon. 



 

73 

5.6 Summary 

The background chapter set up the research effort by giving detailed background on 

Java and how it’s evolved to become a secure architecture.  The SSL and JSSE 

implementations of it were explained.  The handshake and record protocol within SSL 

were mapped to show how the SSL process of encryption actually works.  JSSE class 

mappings and SSL interaction figures were shown and explained, as were security 

concerns associated with any SSL implementation.  

The methodology chapter stated the research problem and the goals of the research.  

This chapter also laid out the system and the services provided by the system.  

Performance metrics were defined and parameters and factors were identified.  The 

workload and its implementation were explained as were the details of how the factors 

and parameters were implemented in the simulation program.  

Chapter Four focused on the analysis and results of the experimentation.  The raw 

data obtained from the simulation scenarios was presented. The analysis of the data is 

explained and the answers are matched to the investigative questions of the research 

effort. 

This chapter discussed the conclusions of the research and talked to the 

significance of the effort.  The other sections of this chapter discussed the conclusions 

reached from the study, the significance of the research effort, recommendations for 

actions, and recommendations for future research. 

   

 



 

74 

Appendix A 

 
Figure A.1:  JMP Distribution Data for Heap Size of 64 MB (Part 1) 

 

 

 

 



 

75 

Figure A.2:  JMP Distribution Data for Heap Size of 64 MB (Part 2) 
 



 

76 

Figure A.3:  JMP Distribution Data for Heap Size of 64 MB (Part 3) 
 



 

77 

Figure A.4:  JMP Distribution Data for Heap Size of 96 MB (Part 1) 
 



 

78 

Figure A.5:  JMP Distribution Data for Heap Size of 96 MB (Part 2) 
 



 

79 

Figure A.6:  JMP Distribution Data for Heap Size of 96 MB (Part 3) 
 



 

80 

Figure A.7:  JMP Distribution Data for Heap Size of 256 MB (Part 1) 
 



 

81 

Figure A.8:  JMP Distribution Data for Heap Size of 256 MB (Part 2) 
 



 

82 

Figure A.9:  JMP Distribution Data for Heap Size of 256 MB (Part 3) 
 



 

83 

Figure A.10:  JMP Distribution Data for Heap Size of 384 MB (Part 1) 
 



 

84 

Figure A.11:  JMP Distribution Data for Heap Size of 384 MB (Part 2) 
 



 

85 

 

Figure A.12:  JMP Distribution Data for Heap Size of 384 MB (Part 3) 
 

 

 

 



 

86 

Appendix B 

 

DES3H384d1418 Socket/CPU %

0
20
40
60
80

100
120
140
160

0 500 1000 1500 2000

Sockets created

C
P

U 
&

Socket/CPU %

 
Figure B.1:  CPU Utilization for DES3, Heap 384 MB, and Data Size 1418 Bytes 

 

DES3H384d768 Socket/CPU %

0

20

40

60

80

100

120

140

0 500 1000 1500 2000

Sockets

CP
U 

% DES3H384d768
Socket/CPU %

 
Figure B.2:  CPU Utilization for DES3, Heap 384 MB, and Data Size 768 Bytes 

 

 



 

87 

DES3H384d16 Socket/CPU %

0

20

40

60

80

100

120

0 1000 2000 3000 4000 5000

Sockets created

cp
u 

% DES3H384d16
Socket/CPU %

 
Figure B.3:  CPU Utilization for DES3, Heap 384 MB, and Data Size 16 Bytes 

 

rc4h384d1418 sockets/cpu %

0

20

40

60

80

100

120

0 1000 2000 3000

Sockets Created

CP
U 

% rc4h384d1418
sockets/cpu %

 
Figure B.4:  CPU Utilization for RC4, Heap 384 MB, and Data Size 1418 Bytes 

 



 

88 

rc4h384d768 sockets/cpu %

0
20
40
60
80

100
120
140
160

0 1000 2000 3000 4000

Sockets Created

C
P

U 
% rc4h384d768

sockets/cpu %

 
Figure B.5:  CPU Utilization for RC4, Heap 384 MB, and Data Size 768 Bytes 

 

rc4h384d16 sockets/cpu %

0

20

40

60

80

100

0 1000 2000 3000 4000 5000

Sockets Created

CP
U 

% rc4h384d16
sockets/cpu %

 
Figure B.6:  CPU Utilization for RC4, Heap 384 MB, and Data Size 16 Bytes 

 



 

89 

AES256h384d1418 Sockets/CPU %

0

20

40

60

80

100

120

140

0 1000 2000 3000

Sockets Created

CP
U 

% AES256h384d1418
Sockets/CPU %

 
Figure B.7:  CPU Utilization for AES 256-bit, Heap 384 MB, and Data Size 1418 Bytes 

 

AES256h384d768 Sockets/CPU %

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500

Sockets Created

C
PU

 % AES256h384d768
Sockets/CPU %

 
Figure B.8:  CPU Utilization for AES 256-bit, Heap 384 MB, and Data Size 768 Bytes 

 



 

90 

AES256h384d16 Sockets/CPU %

0

20

40

60

80

100

0 1000 2000 3000 4000 5000

Sockets Created

C
PU

 % AES256h384d16
Sockets/CPU %

 
Figure B.9:  CPU Utilization for AES 256-bit, Heap 384 MB, and Data Size 16 Bytes 

 

AES128h384d1418 Sockets/CPU %

0

20

40

60

80

100

120

0 1000 2000 3000

Sockets Created

C
PU

 % AES128h384d1418
Sockets/CPU %

 
Figure B.10:  CPU Utilization for AES 128-bit, Heap 384 MB, and Data Size 1418 Bytes 
 



 

91 

AES128h384d768 Sockets/CPU %

0

20

40

60

80

100

120

0 1000 2000 3000 4000

Sockets Created

CP
U 

% AES128h384d768
Sockets/CPU %

 
Figure B.11:  CPU Utilization for AES 128-bit, Heap 384 MB, and Data Size 768 Bytes 

 

AES128h384d16 Sockets/CPU %

-20

0

20

40

60

80

100

0 1000 2000 3000 4000 5000

Sockets Created

C
PU

 % AES128h384d16
Sockets/CPU %

 
Figure B.12:  CPU Utilization for AES 128-bit, Heap 384 MB, and Data Size 16 Bytes 

 

 

 



 

92 

Appendix C 

KeyManagerFactory - This class acts as a factory for key managers based on a source of 

key material. Each key manager manages a specific type of key material for use by 

secure sockets. The key material is based on a KeyStore and/or provider specific 

sources [Sun03].  

KeyManagerFactory::getDefault()-Generates a KeyManagerFactory object that 

implements the specified key management algorithm [Sun03]. 

KeyManager- Base interface for JSSE key managers. These manage the key material 

which is used to authenticate to the peer of a secure socket [Sun03]. 

SecureRandom- This class provides a cryptographically strong pseudo-random number 

generator (PRNG) [Sun03a]. 

SSLContext- Instances of this class represent a secure socket protocol implementation 

which acts as a factory for secure socket factories. This class is initialized with an 

optional set of key and trust managers and source of secure random bytes [Sun03]. 

SSLContext::getInstance()-Generates a SSLContext object that implements the specified 

secure socket protocol [Sun03]. 

SSLServerSocketFactory- This class creates SSL server sockets [Sun03]. 

SSLServerSocket- This class extends ServerSockets and provides secure server sockets 

using protocols such as the Secure Sockets Layer (SSL) or Transport Layer Security 

(TLS) protocols. Instances of this class are generally created using a 

SSLServerSocketFactory. The primary function of SSLServerSockets is to create 

SSLSockets by accepting connections. SSLServerSockets contain several pieces of 



 

93 

state data which are inherited by the SSLSocket at socket creation. These include the 

enabled cipher suites and protocols, whether client authentication is necessary, and 

whether created sockets should begin handshaking in client or server mode. The state 

inherited by the created SSLSocket can be overriden by calling the appropriate methods 

[Sun03]. 

SSLSession – Public Interface - In SSL, sessions are used to describe an ongoing 

relationship between two entities. Each SSL connection involves one session at a time, 

but that session may be used on many connections between those entities, 

simultaneously or sequentially. The session used on a connection may also be replaced 

by a different session. Sessions are created, or rejoined, as part of the SSL handshaking 

protocol. Sessions may be invalidated due to policies affecting security or resource 

usage. Session management policies are typically used to tune performance [Sun03]. 

SSLSocketFactory- Instances of this kind of socket factory return SSL sockets. An SSL 

implementation may be established as the "default" factory [Sun03]. 

SSLSocket- SSLSocket is a class extended by sockets which support the "Secure Sockets 

Layer" (SSL) or IETF "Transport Layer Security" (TLS) protocols. Such sockets are 

normal stream sockets (java.net.Socket), but they add a layer of security protections 

over the underlying network transport protocol, such as TCP [Sun03]. 

TrustManagerFactory- The javax.net.ssl.TrustManagerFactory is an engine class 

for a provider-based service that acts as a factory for one or more types of 

TrustManager objects [Sun03]. 

TrustManagerFactory::getDefault()-Generates a TrustManagerFactory object that 

implements the specified trust management algorithm [Sun03]. 



 

94 

TrustManager- The primary responsibility of the TrustManager is to determine whether 

the presented authentication credentials should be trusted. If the credentials are not 

trusted, the connection will be terminated. To authenticate the remote identity of a 

secure socket peer, you need to initialize an SSLContext object with one or more 

TrustManagers. You need to pass one TrustManager for each authentication 

mechanism that is supported. If null is passed into the SSLContext initialization, a trust 

manager will be created for you. Typically, there is a single trust manager that supports 

authentication based on X.509 public key certificates [Sun03].



 

95 

Bibliography 

[ApP00] Apostolopoulos, G., V. Peris, P. Pradhan, D. Saha, “Securing Electronic 
Commerce:  Reducing the SSL Overhead,” IEEE Network, 8-16 (July/August 2000). 
 
[Bar01] Barber, R., “Hacking Techniques: The tools that hackers use, and how they are 
evolving to become more sophisticated,” Computer Fraud & Security, Volume: 2001, 
Issue 3, pp. 9-12, (March 2001).  
 
[BlD96] Blaze, M., W. Diffie, R.L. Rivest, B. Schneier, T. Shimo – Mura, E. Thompson, 
M. Wiener, “Minimal Key Length for Symmetric Ciphers to Provide Adequate 
Commercial Security,” A Report by an Ad Hoc Group of Cryptographers and Computer 
Scientists, (January 1996). 
  
[BoB03] Boneh, D., D. Brumley, “Remote Timing Attacks are Practical,” White Paper 
from Stanford University, http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf, (March 
2003) 
 
[Bon99] Boneh, D., “Twenty Years of Attacks on the RSA Cryptosystem”, j-NAMS 46 
number 2, pp. 203-213, (February 1999). 
 
[Bur02] Burkholder, P., “SSL Man-In-The-Middle Attacks,” SANS Infosec Reading 
Room, http://www.sans.org/rr/threats/man_in_the_middle.php, (February 2002). 
 
[Cho02] Chou, W., “Inside SSL:  The Secure Sockets Layer Protocol,” IT Pro, 37-41 
(September/October 2002). 
 
[Cho02a] Chou, W., “Inside SSL:  Accelerating Secure Transactions,” IT Pro, 47-52 
(July/August 2002). 
 
[Gre02] Greenfield, D., “SSL and TLS”, Network Magazine, 
http://www.networkmagazine.com/article/NMG20021203S0012/2, (December 2002). 
 
[Har03] Harding, S., “Basic Cryptography, Part 7. One-Time Pads”, The Sierra Times, 
http://www.sierratimes.com/03/09/03/science.htm, (March 2003). 
 
[McG02] McGraw, G., “On Bricks and Walls: Why Building Secure Software is Hard,” 
Computers and Security, Volume 21, Issue 3, pp. 229-238, (June 2002).  
 
[McS03] McClure, S., Sa. Shah, Sh. Shah, “Web Hacking – Attacks and Defense”, 
Pearson Education Inc., (2003). 
 
[Nac99] Naccache, D., “Padding Attacks on RSA”, Information Security Technical 
Report, Volume 4, Issue 4, pp. 28-33, (1999). 
 



 

96 

[NIST95] National Institute of Standards and Technology, “Secure Hash Standard”, 
http://www.itl.nist.gov/fipspubs/fip180-1.htm, (April 1995). 
 
[NIST98] National Institute of Standards and Technology, “SKIPJACK and KEA 
Algorithm Specifications Version 2.0”, 
http://csrc.nist.gov/CryptoToolkit/skipjack/skipjack.pdf, (May 1998). 
  
[NIST99] National Institute of Standards and Technology, “Federal Information 
Processing Standards Publication 46-3”, http://csrc.nist.gov/publications/fips/fips46-
3/fips46-3.pdf, (October 1999). 
 
[NIST00] National Institute of Standards and Technology, “Federal Information 
Processing Standards Publication 186-2”, http://csrc.nist.gov/publications/fips/fips186-
2/fips186-2-change1.pdf (January 2000). 
  
[NIST01] National Institute of Standards and Technology, “Federal Information 
Processing Standards Publication 197”, http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf, (November 2001). 
 
 [PeC00] Perrone, P.J., V. Chaganti, “Building Java Enterprise Systems with J2EE”, 
Sam’s Publishing (2000). 
 
[Rei96] Reid, J., “Plugging the Holes in Host-based Authentication”, Computers &  
Security, Volume 15, Issue 8, pp. 661-671, (1996).  
 
[RFC1321] Request for Comment 1321, “The MD-5 Message Digest Algorithm”, 
http://www.faqs.org/rfcs/rfc1321.html, (April 1992). 
 
[RFC2246] Request for Comment 2246, “The TLS Protocol Version 1.0”, 
http://ietf.org/rfc/rfc2246.txt, (January 1999). 
 
[RFC2268] Request for Comment 2268, “A Description of the RC2(r) Encryption 
Algorithm”, http://www.faqs.org/rfcs/rfc2268.html, (March 1998). 
 
[RFC2437] Request for Comment 2437, “PKCS #1: RSA Cryptography Specifications 
Version 2.0”, http://www.faqs.org/rfcs/rfc2437.html, (October 1998). 
 
[Riv95] Rivest, R.L., “The RC5 Encryption Algorithm”, CryptoBytes (1) 1 (Spring 
1995). 
 
[Sch95] Schneier, B., “The Blowfish Encryption Algorithm – One Year Later”, Dr. 
Dobb’s Journal, (September 1995). 
 
[Sch98] Schneier, B., “Cryptographic design vulnerabilities,” Computer, Volume 31, 
Issue 9, pp 29-33, (September 1998).  



 

97 

 
[Sun03] Sun Microsystems, “Java Secure Socket Extension (JSSE) 1.0.3 API User’s 
Guide,” http://java.sun.com/products/jsse, (May 2003). 
 
[Sun03a] Sun Microsystems, “SecureRandom Class,” 
http://java.sun.com/j2se/1.4/docs/api/java/security/SecureRandom.html. 
 
[Whi03] Whittaker, J., “How to Break Software:  A Practical Guide to Testing”, Pearson 
Education (2003). 
 
[ViM02] Viega, Messier, Chandra, “Network Security with OpenSSL,” O’Reilly (2002). 
 



 

 

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other 
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information 
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other 
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

23-03-2004 
2. REPORT TYPE  

Master’s Thesis  
3. DATES COVERED (From – To) 

March 2003 – March 2004 
5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

4.  TITLE AND SUBTITLE 
 
AN ANALYSIS OF THE PERFORMANCE AND 
SECURITY OF J2SDK 1.4 JSSE IMPLEMENTATION OF 
SSL/TLS  

5c.  PROGRAM ELEMENT NUMBER 

5d.  PROJECT NUMBER 
 
5e.  TASK NUMBER 

6.  AUTHOR(S) 
 
Bias, Danny R., Captain, USAF 
 
 
 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/EN) 
 2950 Hobson Way, Building 640 
 WPAFB OH 45433-8865 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT/GCS/ENG/04-02 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
  Neal Ziring  
    TD/C4 NSA  
    Fort George G. Meade, MD 20755-6000 
    410-854-6191 

11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
       
        APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

 
13. SUPPLEMENTARY NOTES  
 
 
14. ABSTRACT  

  The Java SSL/TLS package distributed with the J2SE 1.4.2 runtime is a Java implementation of the SSLv3 
and TLSv1 protocols.  Java-based web services and other systems deployed by the DoD will depend on this 
implementation to provide confidentiality, integrity, and authentication.  Security and performance assessment of this 
implementation is critical given the proliferation of web services within DoD channels.  This research assessed the 
performance of the J2SE 1.4.2 SSL and TLS implementations, paying particular attention to identifying performance 
limitations given a very secure configuration.   

The performance metrics of this research were CPU utilization, network bandwidth, memory, and maximum 
number of secure socket that could be created given various factors.  This research determined an integral 
performance relationship between the memory heap size and the encryption algorithm used.   By changing the 
default heap size setting of the Java Virtual Machine from 64 MB to 256 MB and using the symmetric encryption 
algorithm of AES256, a high performance, highly secure SSL configuration is achievable.  This configuration can 
support over 2000 simultaneous secure sockets with various encrypted data sizes.  This yields a 200 percent increase 
in performance over the default configuration, while providing the additional security of 256-bit symmetric key 
encryption to the application data. 
  
15. SUBJECT TERMS 
Java Programming Language; Performance(Engineering); Test and Evaluation; Electronic Security; Cryptography; 
Secure Communications      
16. SECURITY CLASSIFICATION 
OF: 

19a.  NAME OF RESPONSIBLE PERSON 
Richard A. Raines, AD-23, DAF 

a. 
REPORT 
 

U 

b. 
ABSTRACT 
 

U 

c. THIS 
PAGE 

 
U 

17. LIMITATION 
OF  
     ABSTRACT 
 
 

UU 

18. 
NUMBER  
      OF 
      PAGES 
 

98 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-6565, ext 4278 
(richard.raines@afit.edu) 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18



 

 

 


